Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 12 de 12
1.
J Photochem Photobiol B ; 254: 112892, 2024 May.
Article En | MEDLINE | ID: mdl-38513542

BACKGROUND: The dramatic increase of drug-resistant bacteria necessitates urgent development of platforms to simultaneously detect and inactivate bacteria causing wound infections, but are confronted with various challenges. Delta amino levulinic acid (ALA) induced protoporphyrin IX (PpIX) can be a promising modality for simultaneous bioburden diagnostics and therapeutics. Herein, we report utility of ALA induced protoporphyrin (PpIX) based simultaneous bioburden detection, photoinactivation and therapeutic outcome assessment in methicillin resistant Staphylococcus aureus (MRSA) infected wounds of mice. METHODS: MRSA infected wounds treated with 10% ALA were imaged with help of a blue LED (∼405 nm) based, USB powered, hand held device integrated with a modular graphic user interface (GUI). Effect of ALA application time, bacteria load, post bacteria application time points on wound fluorescence studied. PpIX fluorescence observed after excitation with blue LEDs was used to detect bioburden, start red light mediated antimicrobial photodynamic therapy (aPDT), determine aPDT effectiveness and assess selectivity of the approach. RESULTS: ALA-PpIX fluorescence of wound bed discriminates infected from uninfected wounds and detects clinically relevant load. While wound fluorescence pattern changes as a function of ALA incubation and post infection time, intra-wound inhomogeneity in fluorescence correlates with the Gram staining data on presence of biofilms foci. Lack of red fluorescence from wound granulation tissue treated with ALA suggests selectivity of the approach. Further, significant reduction (∼50%) in red fluorescence, quantified using the GUI, relates well with bacteria load reduction observed post topical aPDT. CONCLUSION: The potential of ALA induced PpIX for simultaneous detection of bioburden, photodynamic inactivation and "florescence-guided aPDT assessment" is demonstrated in MRSA infected wounds of mice.


Methicillin-Resistant Staphylococcus aureus , Photochemotherapy , Mice , Animals , Aminolevulinic Acid/pharmacology , Aminolevulinic Acid/therapeutic use , Photosensitizing Agents/pharmacology , Photosensitizing Agents/therapeutic use , Photochemotherapy/methods , Fluorescence , Protoporphyrins/pharmacology
2.
Lasers Med Sci ; 39(1): 60, 2024 Feb 14.
Article En | MEDLINE | ID: mdl-38353734

Antimicrobial photodynamic therapy (aPDT) can be a viable option for management of intranasal infections. However, there are light delivery, fluence, and photosensitizer-related challenges. We report in vitro effectiveness of an easily fabricated, low-cost, portable, LED device and a formulation comprising methylene blue (MB) and potassium iodide (KI) for photoinactivation of pathogens of the nasal cavity, namely, methicillin-resistant Staphylococcus aureus, antibiotic-resistant Klebsiella pneumoniae, multi-antibiotic-resistant Pseudomonas aeruginosa, Candida spp., and SARS-CoV-2.In a 96-well plate, microbial suspensions incubated with 0.005% MB alone or MB and KI formulation were exposed to different red light (~ 660 ± 25 nm) fluence using the LED device fitted to each well. Survival loss in bacteria and fungi was quantified using colony-forming unit assay, and SARS-CoV-2 photodamage was assessed by RT-PCR.The results suggest that KI addition to MB leads to KI concentration-dependent potentiation (up to ~ 5 log10) of photoinactivation in bacteria and fungi. aPDT in the presence of 25 or 50 mM KI shows the following photoinactivation trend; Gm + ve bacteria > Gm - ve bacteria > fungi > virus. aPDT in the presence of 100 mM KI, using 3- or 5-min red light exposure, results in complete eradication of bacteria or fungi, respectively. For SARS-CoV-2, aPDT using MB-KI leads to a ~ 6.5 increase in cycle threshold value.The results demonstrate the photoinactivation effectiveness of the device and MB-KI formulation, which may be helpful in designing of an optimized protocol for future intranasal photoinactivation studies in clinical settings.


Methicillin-Resistant Staphylococcus aureus , Photosensitizing Agents , Photosensitizing Agents/pharmacology , Methylene Blue/pharmacology , Potassium Iodide/pharmacology , Anti-Bacterial Agents , Bacteria , SARS-CoV-2
3.
Biomed Mater ; 19(2)2024 Jan 19.
Article En | MEDLINE | ID: mdl-38181448

Antimicrobial wound dressings play a crucial role in treatment of wound infections. However, existing commercial options fall short due to antibiotic resistance and the limited spectrum of activity of newly emerging antimicrobials against bacteria that are frequently encountered in wound infections. Antimicrobial photodynamic therapy (aPDT) is very promising alternative therapeutic approach against antibiotic resistant microbes such as methicillin resistantStaphylococcus aureus (MRSA). However, delivery of the photosensitizer (PS) homogeneously to the wound site is a challenge. Though polymeric wound dressings based on synthetic and biopolymers are being explored for aPDT, there is paucity of data regarding theirin vivoefficacy. Moreover, there are no studies on use of PS loaded, pluoronic (PL) and pectin (PC) based films for aPDT. We report development of a polymeric film for potential use in aPDT. The film was prepared using PL and PC via solvent casting approach and impregnated with methylene blue (MB) for photodynamic inactivation of MRSAin vitroandin vivo. Atomic force microscopic imaging of the films yielded vivid pictures of surface topography, with rough surfaces, pores, and furrows. The PL:PC ratio (2:3) was optimized that would result in an intact film but exhibit rapid release of MB in time scale suitable for aPDT. The film showed good antibacterial activity against planktonic suspension, biofilm of MRSA upon exposure to red light. Investigations on MRSA infected excisional wounds of mice reveal that topical application of MB loaded film for 30 min followed by red light exposure for 5 min (fluence; ∼30 J cm-2) or 10 min (fluence; ∼60 J cm-2) reduces ∼80% or ∼92% of bioburden, respectively. Importantly, the film elicits no significant cytotoxicity against keratinocytes and human adipose derived mesenchymal stem cells. Taken together, our data demonstrate that PS-loaded PL-PC based films are a promising new tool for treatment of MRSA infected wounds.


Anti-Infective Agents , Methicillin-Resistant Staphylococcus aureus , Wound Infection , Animals , Mice , Humans , Methicillin/therapeutic use , Poloxamer/therapeutic use , Methylene Blue/therapeutic use , Pectins/therapeutic use , Photosensitizing Agents , Anti-Bacterial Agents , Polymers , Biofilms , Wound Infection/drug therapy , Wound Infection/microbiology
4.
Biomed Mater ; 19(2)2024 Jan 24.
Article En | MEDLINE | ID: mdl-38215483

With the rise in microbial resistance to traditional antibiotics and disinfectants, there is a pressing need for the development of novel and effective antibacterial agents. Two major approaches being adopted worldwide to overcome antimicrobial resistance are the use of plant leaf extracts and metallic nanoparticles (NPs). However, there are no reports on the antibacterial potential of NPs coated with plant extracts, which may lead to novel ways of treating infections. This study presents an innovative approach to engineer antibacterial NPs by leveraging the inherent antibacterial properties of zinc oxide NPs (ZnO NPs) in combination withAzadirachta indica(AI) leaf extract, resulting in enhanced antibacterial efficacy. ZnO NPs were synthesised by the precipitation method and subsequently coated withAIleaf extract to produce ZnO-AInanocore-shell structures. The structural and morphological characteristics of the bare and leaf extract coated ZnO NPs were analysed by x-ray diffraction and field emission scanning electron microscopy, respectively. The presence of anAIleaf extract coating on ZnO NPs and subsequent formation of ZnO-AInanocore-shell structures was verified through Fourier transform infrared spectroscopy and photoluminescence techniques. The antibacterial efficacy of both ZnO NPs and ZnO-AInanocore-shell particles was evaluated against methicillin-resistantStaphylococcus aureususing a zone of inhibition assay. The results showed an NP concentration-dependent increase in the diameter of the inhibition zone, with ZnO-AInanocore-shell particles exhibiting superior antibacterial properties, owing to the combined effect of ZnO NPs and the poly phenols present inAIleaf extract. These findings suggest that ZnO-AInanocore-shell structures hold promise for the development of novel antibacterial creams and hydrogels for various biomedical applications.


Azadirachta , Metal Nanoparticles , Methicillin-Resistant Staphylococcus aureus , Zinc Oxide , Methicillin , Zinc Oxide/chemistry , Anti-Bacterial Agents/chemistry , Metal Nanoparticles/chemistry , Plant Extracts/chemistry , X-Ray Diffraction , Spectroscopy, Fourier Transform Infrared , Microbial Sensitivity Tests
5.
Eur Biophys J ; 52(1-2): 91-100, 2023 Feb.
Article En | MEDLINE | ID: mdl-36929427

Lithium has been the treatment of choice for patients with bipolar disorder. However, lithium overdose happens more frequently since it has a very narrow therapeutic range in blood, necessitating investigation of its adverse effects on blood cells. The possible changes that lithium exposure may have on functional and morphological characteristics of human red blood cells (RBCs) have been studied ex vivo using single-cell Raman spectroscopy, optical trapping, and membrane fluorescent probe. The Raman spectroscopy was performed with excitation at 532 nm light, which also results in simultaneous photoreduction of intracellular hemoglobin (Hb). The level of photoreduction of lithium-exposed RBCs was observed to decline with lithium concentration, indicating irreversible oxygenation of intracellular Hb from lithium exposure. The lithium exposure may also have an effect on RBC membrane, which was investigated via optical stretching in a laser trap and the results suggest lower membrane fluidity for the lithium-exposed RBCs. The membrane fluidity of RBCs was further studied using the Prodan generalized polarization method and the results verify the reduction of membrane fluidity upon lithium exposure.


Erythrocytes , Lithium , Humans , Lithium/pharmacology , Lithium/analysis , Erythrocytes/chemistry , Hemoglobins , Lasers , Spectrum Analysis, Raman
6.
Luminescence ; 38(4): 410-420, 2023 Apr.
Article En | MEDLINE | ID: mdl-36756809

Strontium sulphate (SrSO4 ) is a defect-based photoluminescence material, generally used in thermoluminescence applications, and has been studied for infrared (IR) stimulated visible emission. The SrSO4 particles were synthesized using a precipitation method. The orthorhombic phase of SrSO4 was confirmed from the X-ray diffraction pattern and the formation of micron-sized particles was authenticated from field emission scanning electron micrographs. The elemental composition of oxygen and strontium was determined using energy-dispersive X-ray analysis measurement that confirmed the presence of V O • • and V Sr ' ' intrinsic defects in the material. Photoluminescence investigations showed the presence of various defect bands in the band gap giving rise to intrinsic luminescence in SrSO4 . The emission in the visible region was attributed to the defect band arising due to V O • • . Photoluminescence lifetime measurement confirmed the presence of stable defect states with a lifetime in microseconds. The SrSO4 sample was tested using IR lasers and a red-orange emission spot was observed from the powder sample when excited with IR lasers. The underlying principle for IR-to-visible conversion in the material is a defect-mediated phenomenon that has been described through the energy level diagram of the material.


Strontium , Sulfates , Light , Luminescence , X-Ray Diffraction
7.
Eur Biophys J ; 50(6): 867-876, 2021 Sep.
Article En | MEDLINE | ID: mdl-34110463

Management of postprandial hyperglycemia is important for preventing severe complications like cardiovascular disease in diabetes patients. The associated glycemic instability in postprandial hyperglycemia may also cause disorders in circulating red blood cells (RBCs). Therefore, effects of short-term hyperglycemic stress on RBCs such as occur in the postprandial condition, have been studied here ex vivo using single-cell Raman spectroscopy and optical trapping. RBCs incubated in high glucose containing media relevant to postprandial hyperglycemia were studied for changes with respect to controls by analyzing the single-cell Raman spectra acquired with Raman optical tweezers with 532 nm excitation light. Use of 532 nm light for exciting Raman spectra also results in simultaneous photoreduction of intracellular hemoglobin (Hb). The level of photoreduction was noticed to be limited in hyperglycemia-exposed cells in comparison to the control. Since this suggests formation of permanently oxidized Hb in hyperglycemia-exposed RBCs, a fluorescence study was performed which showed elevated levels of oxidative stress in these cells. The changes in the RBC membrane, which may result due to higher levels of oxidative stress, were investigated using optical stretching experiments under the laser trap. The results indicated a loss of elasticity for the RBC membrane due to hyperglycemic exposure.


Hyperglycemia , Optical Tweezers , Erythrocytes/chemistry , Hemoglobins , Humans , Spectrum Analysis, Raman
8.
J Biophotonics ; 14(8): e202100047, 2021 08.
Article En | MEDLINE | ID: mdl-33871929

Raman spectroscopy was performed on GSM 900 and 1800 MHz mobile phone signal exposed red blood cells (RBCs). The observed changes in the Raman spectra of mobile signal exposed RBCs compared to unexposed control suggest reduced hemoglobin-oxygen affinity for the exposed cells. The possible mechanism may involve activation of the voltage gated membrane Ca2+ channels by the mobile phone emissions resulting in an increase in the levels of adenosine triphosphate (ATP) and 2,3-diphosphoglycerate (2,3-DPG) in cells via altered metabolic activities. Further studies carried out with fluorescent Ca2+ indicator confirmed increased intracellular Ca2+ level in the exposed cells. Since intracellular ATP level influences the shape and mechanics of RBCs, exposed cells were studied using diffraction phase microscopy and optical tweezers. Detectable changes in shape and mechanical properties were observed due to mobile signal exposure.


Cell Phone , Erythrocytes , Erythrocyte Count , Hemoglobins , Humans , Optical Tweezers
9.
Lasers Med Sci ; 36(4): 763-772, 2021 Jun.
Article En | MEDLINE | ID: mdl-32767164

Antimicrobial photodynamic therapy (APDT) is a promising approach for treatment of wounds infected with antibiotic-resistant bacteria. In this approach, delivery of appropriate concentration of photosensitizer (PS) at the infected site is a critical step; it is therefore essential that PS need to be administered at the infected site in a suitable formulation. Here, we report preparation of PS-embedded composite biopolymer films and their photobactericidal properties against methicillin-resistant Staphylococcus aureus (MRSA) and biocompatibility. Sodium alginate (SA), pectin (PC), and carboxymethyl cellulose (CMC) were used for preparing films containing chlorin p6 (Cp6, anionic PS) or methylene blue (MB, cationic PS). Films containing 1% CMC (15 mm diameter; 110 ± 09 µm thickness) showed ~ 55% light transmission in 500 to 750 nm region and high swelling rate as indicated by ~ 38% increase in diameter within 1 h. Absorption spectroscopic studies of PS-embedded films revealed that while Cp6 existed mainly in monomeric state, MB existed in both dimeric and monomeric forms. MRSA incubated with the film for 1 h displayed substantial uptake of Cp6 and MB as indicated by the presence of Cp6 fluorescence and MB staining in cells under the microscope. Furthermore, photodynamic treatment (660 nm, 10 J/cm2) of MRSA with Cp6 embedded in film or free Cp6 resulted in ~ 3 log reduction in colony-forming units (cfu), whereas decrease in cfu was less (~ 1 log) for MB-embedded film than for free MB (~ 6 logs). Studies on human keratinocyte (HaCaT) cells showed that there was no significant change in the viability of cells when they were incubated with solubilized films (plain) for 24 h or subjected to treatment with PS-containing films followed by PDT. These results suggest that films are biocompatible and have potential application in photodynamic treatment of MRSA-infected wounds.


Alginates/chemistry , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Carboxymethylcellulose Sodium/chemistry , Pectins/chemistry , Photosensitizing Agents/chemistry , Photosensitizing Agents/pharmacology , Humans , Methicillin-Resistant Staphylococcus aureus/drug effects , Methicillin-Resistant Staphylococcus aureus/radiation effects , Methylene Blue/chemistry , Photochemotherapy , Porphyrins/chemistry
10.
Spectrochim Acta A Mol Biomol Spectrosc ; 247: 119144, 2021 Feb 15.
Article En | MEDLINE | ID: mdl-33188968

Urine analysis is an important clinical test routinely performed in pathology labs for disease diagnosis and prognosis. In recent years, near-infrared Raman spectroscopy has drawn considerable attention for urine analysis as it can provide rapid, reliable, and reagent-free analysis of urine samples. However, one important practical problem encountered in such Raman measurements is the orders of magnitude stronger spectral background preventing one to utilize the full dynamic range of the detector which is required for the measurement of Raman signal with good signal-to-noise ratio (SNR). We report here the results of an exploratory study carried out on human urine samples to show that the photobleaching, which is a major disadvantage during the fluorescence measurement, could be utilized for suppressing the measured background to improve the SNR of the Raman peaks. It was found that once the photobleaching reached its plateau, there were improvements by ~67% and ~47% in the SNR and the signal to background ratio (SBR), respectively, of the Raman signals as compared to the spectra measured at the start of acquisition. Further, the reduced background also allowed us to utilize the full dynamic range of the detector at increased integration time without saturating the detector indicating the possibility of obtaining an improved detection limit.


Spectroscopy, Near-Infrared , Spectrum Analysis, Raman , Humans , Photobleaching , Signal-To-Noise Ratio
11.
J Biophotonics ; 8(11-12): 889-96, 2015 Nov.
Article En | MEDLINE | ID: mdl-26248877

We report the development of a depth-sensitive Raman spectroscopy system using the configuration of cone-shell excitation and cone detection. The system uses a 785 nm diode laser and three identical axicons for Raman excitation of the target sample in the form of a hollow conic section. The Raman scattered light from the sample, passed through the same (but solid) conic section, is collected for detection. Apart from its ability of probing larger depths (~ few mm), an important attraction of the system is that the probing depths can be varied by simply varying the separation between axicons in the excitation arm. Furthermore, no adjustment is required in the sample arm, which is a significant advantage for noncontact, depth-sensitive measurement. Evaluation of the performance of the developed setup on nonbiological phantom and biological tissue sample demonstrated its ability to recover Raman spectra of layers located at depths of ~2-3 mm beneath the surface.


Spectrum Analysis, Raman/instrumentation , Spectrum Analysis, Raman/methods , Acetaminophen/chemistry , Animals , Chickens , Equipment Design , Light , Muscle, Skeletal/chemistry , Paraffin/chemistry , Phantoms, Imaging , Polymethyl Methacrylate/chemistry , Polystyrenes/chemistry , Scattering, Radiation , Tibia/chemistry
12.
J Biophotonics ; 7(9): 690-702, 2014 Sep.
Article En | MEDLINE | ID: mdl-23821433

We report a pilot study carried out to evaluate the applicability of in vivo Raman spectroscopy for differential diagnosis of malignant and potentially malignant lesions of human oral cavity in a clinical setting. The study involved 28 healthy volunteers and 171 patients having various lesions of oral cavity. The Raman spectra, measured from multiple sites of normal oral mucosa and of lesions belonging to three histopathological categories, viz. oral squamous cell carcinoma (OSCC), oral submucous fibrosis (OSMF) and leukoplakia (OLK), were subjected to a probability based multivariate statistical algorithm capable of direct multi-class classification. With respect to histology as the gold standard, the diagnostic algorithm was found to provide an accuracy of 85%, 89%, 85% and 82% in classifying the oral tissue spectra into the four tissue categories based on leave-one-subject-out cross validation. When employed for binary classification, the algorithm resulted in a sensitivity and specificity of 94% in discriminating normal from the rest of the abnormal spectra of OSCC, OSMF and OLK tissue sites pooled together.


Mouth Neoplasms/diagnosis , Spectrum Analysis, Raman , Adult , Female , Humans , Male , Middle Aged , Mouth/cytology , Mouth/pathology , Mouth Neoplasms/pathology , Pilot Projects , ROC Curve
...